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SHOCK-TUBE FLOW ANALYSIS WITH A DIMENSIONLESS
VELOCITY NUMBER
By N. Muniswamy Reddy*

Ames Research Center
SUMMARY

The classical shock-tube equation, for a constant-area shock tube, is
rederived in terms of a dimensionless velocity. The equation reduces to a
universal form so that a single graphical plot gives the solution of the shock-
tube equation for all combinations of pressures and temperatures in the driver.
Real-gas effects behind the shock wave are included in the solution, but the
driver gas is assumed to be perfect with a constant ratioco of specific heats.
Specific solutions for perfect and real driven gases are discussed. All the
thermodynamic quantities behind the unsteady rarefaction wave, ratios across
the contact surface, wave diagram parameters and testing time in a shock tube
are expressed in terms of the dimensionless velocity. Twin tailoring constants
are obtained from the universal shock-tube equation, one giving the tailloring
Mach number and the other giving the loading pressure ratio and speed-of~sound
ratio (in the driver-driven tubes) required to achieve the talloring Mach num-
ber. Conditions for matching the thermodynamic quantities across the contact
surface are given, in terms of the dimensionless velocity, and their signifi-
cance in shock-tube performance is discussed.

INTRODUCTION

The problem of predicting the
strength of the shock wave produced by
instantaneously opening the diaphragm

T, X S that separates a high and low pressure
region has been considered extensively

® //éh&f © in reference 1. By using the condi-
e | ® tions of equal pressure and equal
® g : velocity across the contact surface
I—— ' S (C in fig. 1), one can derive an
4

equation for the pressure ratio (Psi)
across the moving shock in terms of
Figure 1.~ Wave system in an ideal shock tube. Known guantities? Pgaq1, 2415 715

*This report was prepared while the author was a National Academy of
Sciences' Resident Research Assoclate at the Ames Research Center. Dr. Reddy
is now at Aerospace Research lLaboratories, Ohio State University Research
Foundation, Columbus, Ohio.

1The notation used here is the same as in reference 1; definitions of
all parameters are given in the Notation in the appendix. Regions (1), (2),
(3), and (4) are identified in figure 1.



and y4. For example, the equation derived in reference 1, for a perfect
driver and driven gas combination, in a constant-area shock tube, is

B P -1
(P1uPoy) 4 74184814(Po1 ) -1 =0 (1)

[p,(a,Poy + 1)1%/2

To evaluate Ps; from equation (1) a graphical plot is necessary, since Poi
is an implicit function of known quantities. Therefore, many graphical plots
are given in reference 1 for various combinations of speed of sound and
specific heat ratic. However, if a solution for a specific combination of
841, Pa1, and 741 1is desired, a new graphical plot must be generated. This
problem becomes aggravated in combustion driven and electric arc heated shock
tubes because different effective values of a4, Py, and ys are obtained for
each different run condition. Furthermore, consideration of real-gas effects
(ref. 2) on the performance of the shock tube requires a separate graphical
interpolation for each case. In addition, all other thermodynamic gquantities
in region (3) depend not only on the shock Mach number but also on a4 and
v4. Hence, a large series of curves for thermodynamic quantities in this
region is needed (ref. 1).

Hall and Russo (refs. 3 and 4) recognized that equation (1) could be
expressed in terms of two normalized parameters such that the functional rela-
tion between them is weakly dependent on just the quantity vy,. Thelr work
was limited to an ideal gas in both the driver and driven tubes. It is the
purpose of this report to show that the shock-tube equation can be expressed
in terms of a slightly different set of dimensionless numbers that permits one
to include the effects of real driven gas, and moreover that permits all the
flow quantities in different regions in the shock tube to be reduced to rela-
tively simple functions of one dimensionless velocity nuwber. In a sense,
then, the work of Hall and Russo i1s generalized and extended here, although
the present report pertains only to an area ratio of unity between driver and
driven chambers, while thelrs includes the effect of different area ratios in
an ideal-gas analysis.

In the present analysis, we rederive the shock-tube equation in such a
form that a single graphical plot gives the solution for all combinations of
Py and ay;. Furthermore, no assumption as to the thermodynamic state of the
gas behind the shock wave (region (2)) is made in deriving this universal
shock-tube equation, so that it also gives the solution for a real gas behind
the shock wave. OSpecific ways of obtaining the shock Mach numbers for a per-
fect and real gas are discussed. 1In each case, the driver gas 1s treated as
a perfect gas. However, an effective 7y, can be chosen to account for some
of the real-gas effects in the driver.

The following aspects of shock-tube flow are also discussed in terms of
the new dimensionless velocity number:

(1) Functional dependence of all thermodynamic quantities in regions (2)
and (3), and of the wave diagram parameters.



(2) Testing time.

(3) Tailored operation.2 The universal shock-tube equation glves twin
universal tailoring constants.

(4) Significance of matching the contact surface temperature.

THE SHOCK-TUBE EQUATION

In a shock tube, the unsteady rarefaction wave that travels into the
driver converts the pressure and thermal energy into kinetic energy, and
large particle velocities result behind the rarefaction wave (region (3)).
The normal shock wave traveling into the driven gas also creates large parti-
cle velocities in region (2) and these must match the velocity at the contact
surface with region (3). A general expression for this velocity, for perfect
driver gas, is the well-known relation (ref. 1)

284

[1 - (P2s)P4] (2)

Yo = Ug =
Y4 = 1

where the pressure, as well as the velocity, has been matched at the contact
surface (pz = p3). The meximum velocity (usually called the escape velocity)
that can be achieved in region (3) is simply the limit of equation (2) when
P24 -» 0
2&4
Ug = —
3 Ya - 1 (3)

We shall define a dimensionless velocity

Uo Us
Rn = a; = gg (4)

and in terms of this number, equation (2) becomes

Ba

1324 = (P14P21)B4 =1 - Rn (5)

Now, according to conservation of mass and momentum across the shock wave,
the pressure and velocity can be expressed in terms of the shock Mach num-
ber Mg and the density ratio e = p,/p, g

2Tailoring concept 1s defined elsewhere in this report.



g
Y
!

= P1[1 + 7, (1 - €)Mg®] (6)

1l

Uz = (1 - e)Ug = (1 - e)agdy (7

Equation (6) may be put in the form

1
P21 = 71MSZ (l - € + y M 2> (8)

178

and from equations (7), (3), and (k)

2a41Rp
T -a0G, - D (9)
or
Us/as = 2Rp/[(1 - €)(y, - 1)]

Then the shock=-tube equation can be written

N
RS Tals + (B, -1) =0 (10)
- 1 A n - =
74 7 Paz (1 - ¢)?Pa

which when expanded in powers of quantities less than unity becomes

.254
2y

N 24 1Ry Ba o o
7-4_1 1+34e+71MS2-254e + ..+ ® -1 =0

71P41

(11)

If quantities the order of BLE and. 54/71M32 are neglected compared with

unity, which is a good approximation for Mach numbers greater than about L,
the shock-tube equation becomes

(1 - Rn)l /254

s, = = (12)




where Sp is the dimensionless quantity (71/7434) (a4l/[71P41), which we

shall call the shock~tube number. When Ry - O, S, - ®, or, in other words,
@41 > © When Rp - 1, Sy - 0, or Psay -, Thus, all possible shock Mach
numbers are represented by Ry between O and 1. The approximation neglecting
terms of order B e, that was used in deriving equation (12) becomes invalid
at very low Mach numbers; but normally these are not the Mach numbers of

interest. A plot of ©Sp vs. Ry is

%= 1.67 (TAILORING POINT)

%: 1.4 (TAILORING POINT)
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Figure 2.~ Variation of Sp vs. Rp.
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necessary to obtain Ry, for any given
conditions, but a single universal
plot (fig. 2) is sufficient to solve
the shock-tube equation for a given

T4

4

In the derivation of equa-
tion (12) no assumption has been made
gbout the thermodynamic state of the
driven gas behind the shock wave
(region (2)), but the driver gas has
been assumed to be perfect. Hence,
the value of RBn obtained from equa-
tion (12) is unique in the sense that
it is the same irrespective of the
thermodynamic state of the gas behind
the shock wave.

SOLUTIONS OF Ry

Limiting Cases

Perfect driven gas.~- Invoking
as® = y,Po/P> and using conservation
of energy across the shock wave, one
obtains

1
l-e=—2—0f1-—5
(. ) 4
Then, the relation between R, and Mg (eq. (9)) becomes
M, (1 - =) = 8aaR (1h)
S M2 - 4150
s

or

for  Mg® > 1



Hence, the problem of finding Mg or P from the shock-tube equation is
solved.

Driven gas with infinite heat capacity, € — 0(72 -+ 1).- In this limit

28y

;;Tfjjf (15)

My =

Real Driven Gas

The solution for Mg in the case of a real driven gas lies between the
preceding two limits. The change in My between the two limits is

ntg = = (u*) (16)

where (MS*) corresponds to the perfect gas case. Thus, the change in Mg

due to real-gas effects is typically the order of 15 percent or less. The
relatively shall size of the effect is due to the fact that the pressure and
particle velocity behind a shock wave are not significantly affected by real-
gas effects. The relatively strong effects are limited to temperature and
density.

Exact solutions for Mg can be obtained by meking use of existing
charts of real-gas normal shock properties (such as given in ref. 5), along
with the solution for Rp obtained from our universal curve (fig. 2). The
value of R, determines us from equation (4) and the value of Mg can be
determined from a plot of up vs. Mg for a given P;.

THE SHOCK-TUBE NUMBER ©Sp

The parameter Sp 1n equation (12) is a function of the two important
parameters agy and Ps, 1in a shock tube. Note that the diaphragm pressure
ratio DPs1 has far less effect on the shock-tube number than the speed-of-
sound ratio a4i, since S, varies as the square root of the pressure ratio
but as the first power of the sound-speed ratio. This point has been dis-
cussed in reference 1, but it becomes immediately evident with the present
universal form of the shock-tube equation (eg. (12)). It can be shown that
Sn 1s a ratio of two limiting shock Mach numbers,

(MS)P4 100

o = Gy (17)

8.4 17500



where

2841 _NTiP

(MS)P41*“’= (74 - 1)(1 - ¢€) g (MS)a41*m - 71(1 - €)

In addition, so long as the gases in both regions (1) and (L) obey the per-
fect gas law, it follows from the definition of S, that

p
S, = L Lt (18)

Thus, the fundamental parameters in the analysis of shock-tube flow are the
density ratio across the diaphragm Pos (eq. (18)) and the ratio of shock

veloclity to speed of sound in the driver gas Us/a4 (eq. (9)). These are the
. basic quantities represented by our dimensionless numbers ©Sp and Rp, and
these basically determine the complete shock-tube performance.

It is interesting to compare these results with those of reference 3.
The number S, is essentially the same as Hall and Russo's I'14, the relation
between them being

2 74
S = 18
n Yo =1 NT1a (18a)

In the ideal gas this is simply proportional to the square root of the initial
density ratio across the diaphragm, as Hall and Russo have poilnted out The
dimensionless velocity Rp 1s somewhat different from Hall and Russo's param-
eter Mg/JPs1, however, even for an ideal gas:

Ve ~ 1 Mg igeal 2 71las [ Mg
Rp = ) (1 -¢) ag4q, gas 7y, + 1 4 (180)
1 + \J/P
41

It is this difference that permits us to extend the analysis to nonideal
driven gases and to derive simple expressions for all the shock-tube proper-
ties in terms of Rp. Thus, it appears that the parameter R, 1is more useful
in the shock-tube flow analysis than other dimensionless combinations.

ACCURACY OF SHOCK-TUBE EQUATION (EQ. (12))

In the derivation of equation (12), terms of the order B4e and smaller

were neglected. The error between the exact analysis (eq. (1)) for a perfect
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gas and the universal solution

(eq. (12)) was computed at different
shock Mach numbers and is shown in
figure 3. The error is about 4.5 per-
cent at Mg = 3 and reduces to 0.5
and 0.25 percent at Mg = 8 and 15,
respectively, regardless of the value
of B, The magnitude of error will
be still less for a real gas because
€ 1is smaller in this case than for
the ideal gas.

SHOCK-TURE FLOW QUANTITIES WITH Rp

Behind the Unsteady Rarefaction Wave

For a perfect driver gas
(ariven gas state arbitrary) the fol-
lowing thermodynamic quantities in
region (3) can be expressed in terms
of Rnos

azs = (1 - Ry) (19)
Tge = (1 = Rp)® (20)
1-28,
Pag = (1 - By) P* (21)
N
Pas = Pos = (1 - Ry)P® (22)

Tss and Pgy are plotted in figure k.
It can be seen that the effect of 74
is not wvery important as far as these
guantities are concerned.

Across the Contact Surface

The ratics of thermodynamic gquan-
tities across the contact surface for

SThe basic expressions for these quantities were taken from reference 1.

8



perfect driver and driven gases with MSZ >> 1 are given below with only Ry

as the variable:

Bs2

1
= “41

- R

1 1
= 84(———

) (23)

- Ry (B2,
()
Paz = (1 _jRn> <B OLl> (25)
5741
e
i/2
> (74154@1> (27)

107! -

1072

"= 1.67 (TAILORING POINT)

Y= 1.4 (TAILORING POINT}

103
0

Figure 5.~ Variation of Egn with Ry.

Rn

The internal energy ratio Ezz, which
is important in tailoring is plotted
in figure 5. In this case, the wvalue
of 7, has a small but noticeable
effect.

Shock-Tube Wave Diagram Parameters

Speed of the tail of rarefaction
wave.- For a perfect driver gas and
with arbitrary driven gas thermodynam-
ics, the veloclty of the tail of the
rarefaction wave is given as

u

r'— -
EZ = aaBy - 1 (28)

If Rp = l/as the velocity of the tail
of the unsteady rarefaction wave
becomes zero and hence the rarefaction

9



wave remains inside the driver for all times. The corresponding shock-tube
number is

2B,
27,841 (aa - 1)
=By oo = (29)
(rya - VN7, Pax r <l'254>
| AN

Equation (29) glves the relétion between a4 and Py +to keep the rarefaction
wave always inside the driver.

To, Ko, Tg, and Xg.- Using the basic equations in reference 1, we
express the quantities 1o, Xo, Tg, and Xg (which are defined in fig. 1) in
terms of Rp:

Perfect driver gas assumption

104
i . -0y /2
Te = 2(1 - Ry) (30)
103 |- —
XeTe r B XC = (G"-’: - l)TcRn (31)
Perfect driver and driven gases
2 4/
i ] T 7= (1 - Rp) (32)
1
1
HoN ol ]
. - Xg = BR,Tg (33)
' - py L : n These quantities are plotted in fig-

Rn ’ ures 6, 7, and 8, for various combina-
Figure 6.- Variation of 7, and X, with Ry. tions of ¥ and v¥._.
4 1

10
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Testing Time in a Shock Tube

Testing time At in a shock tube is defined as the time elapsed between
the arrival of the shock wave and contact surface at a given station along
the driven tube. Using the relation between us and Ug (eq. (7)), one can
express At in terms of R, as

aglSt _ € By7 2
Xt 3Rp

(34)

where x, 1is the testing station along the shock tube. Once R, is obtained
from the universal plot (fig. 2), At is known. It should be noted that At
becomes very small for a real gas since e - 0, especially at high shock Mach
numbers., The location for maximum testing time from figure 1 should be equal
to Xe. Then, using equations (9) and (31), we have

(o) o = (1o = 7)) = emg (35)
where
3 Lta.,
(Aw)max T Lg

11



TATLORED OPERATION IN A SHOCK TUBE

If the reflected wave after the interaction of a shock wave with a con-
tact surface is a Mach wave, then the contact surface is tailored (refs. 1
and 6). For tailored operation, a condition of the type given below can
easily be derived for the perfect driver and driven gas case (refs. 1 and 6).

oy Pos
(EBE)T = al + P25 (36)
and
2+ (y, - 1L)MS%
Pos = 12 2 (37)
(37, - LMg® - 2(y, - 1)
for

MgZ > 1, (Esz)T = g1

According to equation (23) for Eass, the tailoring constant is given by

(@184)1/2
(RH)T = (38)

0041/2 T (m184)1/2

In terms of Mg,

(&154)1/2
(MS)T = day 1 e e (39)
a«, + (@154)
In addition, the shock-tube constant for tailoring is (from eq. (12))
L
4B,
2y a4 (®41/B4)
(8p)g = = - ‘ 3 (50)
(7, = VN7 Paz R

B
[1+ (a41/84)l/2] e

The twin tailoring conditions (egs. (38) and (40)) can be represented by a
unigue point on the universal plot of the shock~tube equation as shown in fig-
ure 2. The basic condition for talloring is given by Sp. This gives an |
explicit relation between a4y and Pu; for talloring which has been made pos-
sible by the universal form of the shock-tube equation.

12



CONTACT SURFACE MATCHING

In the tailored operation the contact surface 1s not totally matched in

the sense that neither internal energy nor any of the other thermodynamic
quantities (except P and u) are equated across the contact surface.

(1) For a tailored operation (Ess = ag1)

_ 7.+ 1
T32—“4l 74+l

(1)

If acoustic impedance (pa), density, and temperature have to be matched across
the contact surface, the following conditions in terms of temperature ratioc

must be satisfied.

(2) For acoustic impedance matching (pazs = 1)

Taz = 7,43k,

1)

(3) For density matching (pas
Taz = Hyq
(k) For temperature matching (Tas = 1)
Too = 1
_It is interesting that

T = (T = (T
(Tao)y = (Taedpy oy = (s2),

(k2)

(43)

(bk)

Thus, in a tailored operation, density and acoustic impedance across the con-

tact surface are nearly matched but not the temperature ratio.

For contact surface temperature matching (TB = T5) the dimensionless

number Ry should be, according to equation (24),
(1B4) /2
(@1Ba) Y2 + (Bu1a) V2

Ry =

(45)

13



The corresponding shock-tube number is

L.
4p
(“146/@154) < (%)
(Sn)TM = 1_25
2[34

1+ (4ae8/aas,) /2]

Tt should be noted that Rp and S, for tailoring (egs. (38) and (40)) do not
depend on the molecular weights, but Rp and Sp for contact surface
temperature matching do.

For simultaneous tailoring and temperature matching

(Bn)p = (Rp)iy

hence,
Y, t 1

Higa = ;:—E"I = %? (47)

Then (Sn)T becomes equal to (Sp)my.

Even for different 7y conmbinations a4/6 is not very different from
unity; hence pi14 (molecular weight ratio) should be nearly equal to unity
for simultaneous tailoring and temperature matching.

It 1s well recognized that in a shock-tube operation, contact surface
mixing significantly reduces the testing time, particularly at high shock
Mach numbers., This mixing is probably due to unequal temperature and density
across the contact surface, Thus, it is worthwhile to match the thermody-
namic quantities across the contact surface. This requires, according to the
preceding discussion, that driver and driven gas molecular weights be nearly
equal,

CONCLUDING REMARKS

The problem considered is that of predicting the strength of a shock
wave produced when the diaphragm in a shock tube is opened., Without making
any assumptions as tc the thermodynamic state of gas behind the shock wave,
but assuming that the driver gas behaves as perfect gas, we rederive the
shock~tube equation in terms of two new dimensionless numbers. The equation
reduces to a universal form so that a single graphical plot suffices for all
combinations of initial conditions. The fundamental parameters that influ-
ence the performance of a shock tube are the density ratio across the

1h



diaphragm, the shock velocity, and the speed of sound in the driver gas.

All the flow parameters in a shock tube can be expressed in terms of these
dimensionless numbers for all possible shock Mach numbers. The present
universal shock-tube egquation provides twin universal tailoring constants

and puts the talloring operation of a shock tube in clear perspective. It is
hoped that the present analysis will enhance the understanding of the role of
many variables in a shock~tube flow,

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, Feb. 3, 1969
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APPENDIX

NOTATION
a speed of sound
E internal energy ‘
Ug
Mg shock Mach nunber, o
1
P Pressure
Ry dimensionless velocity (defined in eq. (12))
Sy, dimensionless shock-tube number (eq. (12))
Ug shock velocity
u Pparticle velocity
Uy speed of the tail of rarefaction wave
o) density
K molecular welght
Ot testing time in shock tube
Yy ratio of specific heats
P
€ EA (density ratio across the shock wave)
2
r+ 1
@
7y -1
5 y =1
2y
5 71 + 1
7, -1t
Ve (unless otherwise defined)
J Wk

Regions (1), (2), (3), and (1) are identified in figure 1.

Subscripts 1, 2, 3, and 4 refer to regions (1), (2), (3), and (&) as
ldentified in figure 1.

16
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